Math 113 homework due 2/6

I, for one, didn't define 'polyhedron'. I assumed familiarity with the concept, i.e. the ability to distinguish a thing which is a polyhedron from a thing which is not a polyhedron - what some logicians call knowing the extension of the concept

- in Lakatos
(1) Read the "Proofs and Refutations" reading carefully, and the sections on Euler's formula and regular polyhedra in chapter 13 of the textbook.
(2) Compare the proof of Euler's formula from the course notes to the proof we did in class. How do they differ and how do they agree?
(3) Now compare the proof (the first one) from "Proofs and Refutations" to the proof we did in class. How do they differ and how to they agree?
(4) Questions on "Proofs and Refutations":
(a) What is a local counterexample and what is a global counterexample? Distinguish between the two.
(b) What is wrong with definition P ?
(c) What is the definition of "proof" that is (somewhat implicitly) given in the dialogue? What makes a mathematical proof? Do you agree with this definition or not?
(d) (Challenging - do your best to provide an answer or an explanation of your thinking) Why did our picture-frame polygon satisfy Euler's formula, while the one in the dialogue did not?
(5) By modeling our proof from class, show that there is exactly one regular polyhedron with pentagonal faces.

